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Basic Facts about 
Quasibrittle Size Effect 



a) Plastic
• No localization, simultane-

ous, strengths are summed

• C.o.V. decreases with 
structure size as 

• Gaussian distribution

1/ D

b)  Brittle
• Localizes, propagates,  

one element controls Pmax

• No decrease of C.o.V. 
with size D high scatter

• Weibull distribution

c) Quasibrittle
Finite fracture process zone:
- charact. length       Transitional SIZE EFFECT.

Small size: Quasi-Plastic.  Large size: Brittle.

FAILURE TYPES

⇒



QUASIBRITTLE MATERIALS
concrete (archetypical)
fiber composites
rocks
sea ice
toughened ceramics
rigid foams
wood
consolidated snow
particle board
paper, carton
cast iron

nanocomposites
metallic thin films
biological shells—nacre
mortar
masonry
fiber-reinforced concrete
stiff clays
silts, cemented sands
grouted soils
particle board
refractories
bone,  cartilage
coal 
modern tough alloys,…
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Intuitive Explanation of
Energetic Size Effect (Type 2)



Geometric similarity of fractures at different size 
is a required hypothesis for Type 2 size effect. 
Here is a demonstration that it holds true for 
beam shear failures at different sizes. 
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Cause of Size Effect (of Type 1) 
for Failure at Crack Initiation

D

Db

D

Db

M M

ft
' ft

'

σN σN

Cause of size effect
(Can this be denied and
replaced by fractals?)

Vanishing size effect, 
but strength randomness
becomes important

1/

1
r

b
N

rD
D∞

 = + 
 

σ σ

(Alternative derivation:
by fracture mechanics
for a 0)



Size Effect (of Type 2): Dimensional 
Analysis and Asymptotic Matching

0 ,or    0),( 2'

2

0
2'

2

21 =







=ΠΠ

t

N

t

N

flf
Dff σσ

2'
0 / tf fEGl =

2/1

0
2'

2

0

'
2'

2

0

~/~      0   : If

const.~          0   : If

−→=







>>

=→=







<<

DDEG
lf
DflD

f
f

flD

fN
t

N

tN
t

N

σσ

σσ

4 variables: ft' [N/m2], Gf [J/m2], D [m], σN [N/m2]
Characteristic material length implied (Irwin 1958): 

Buckingham theorem:
Max. load given by:

Expansion of f(Π1, Π2) = 0 up to 2nd

order terms yields approx. size effect law:
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Large crack 
at max. load

Bazant, PNAS 2004



Derivations of Size Effect Law
1. Analytical:
– Simplified energy release analysis
– Simplified contour integration of J-

integral
– Dimensional analysis with 

asymptotic matching
– Asymptotic transformations of 

diff.eqs. with boundary conditions
– Asymptotic analysis of equivalent 

LEFM
– Asymptotics of cohesive crack 

model (smeared-tip method)
– Asymptotic expansion of J-integral
– Deterministic limit of probabilistic 

nonlocal theory

2. Numerical:
– FEM with strongly nonlocal 
damage models
– FEM with gradient (weakly 
nonlocal) models
– Random Lattice Discrete 
Particle Model
– Limit of nonlocal 
probabilistic FEM  

MATERIALS:
Concretes,  rocks, sea ice,
toughened ceramics,  
fiber composites,  brittle 
foams, wood, snow 
(avalanches), particle 
board, paper, …



Asymptotic Matching
Size Effect of Divinycell H100 Foam

1

Size Effect Law
(Bazant 1984)

Gf = 0.61 N/mm
cf = 0.33 mm

log D (mm)

lo
g 

σ N
(M

Pa
-2

)

0

-1
-1 10 32

Strength 
criterion

Large-Size
Asymptotic
Expansion

2
1 LEFM

Small-Size
Asymptotic
Expansion-1/2

N
0

= 1t
DBf
D

σ
 
′ + 
 

'
f

'
0 f 0

E G=
g (α )c +g(α )D

Easy EasyHard !



( ) ,1 1

0

rN rk −+= ϑ
σ
σ

Energetic ( Quasibrittle ) Mean Size Effect
Laws and Statistical Generalization

2c – based on cohesive crack model, 1s – statistical generalization
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Classical Narrow-Range Test Data for Size Effect on    
Shear Strength of R.C. Beams without Stirrups
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Reduced-
Scale Tests 
of Beam 
Shear  
Failure at 
Northwestern 
(aggregate   
< 48 mm)
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Incorporating the size effect   
into design code formulas for 
reinforced concrete is easy:

0/1
1

dd+
=ϑ

Multiply the formula for the strength 
contribution of concrete by the            
size effect factor:

(type 2 size effect)



Design Formula for Shear in R.C. Beams   
Proposed in fib 2010 Draft 1) Invalid derivation 

from Modified 
Compression Field 
Theory, MCFT, 
based on  plasticity 
for crack initiation.

2) Effects of  ρw  and
a/d  ignored. 

3) No size effect if 
minimum shear 
reinforcement exists

4) etc.

Proposed by ACI-446 (fracture mechanics based)
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If stirrups ≥ minimum stirrups, the size effect still exists, though pushed 
into larger sizes (d0 will increase by about one order of magnitude).

DEFICIENCIES:
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Comparison of 
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vs. SIZE  d in current codes

Note:  The curves are scaled to the same initial tangent



Stress transmitted across crack is not the reason  
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For small beams, the 
contribution of crack-
bridging stress is 
significant, i.e., 40%; 
while for 1.8 m deep 
beams, it is 
negligible, i.e., 9%.



Failure Mechanism in Shear Test of Large Beam
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Small beam dt = 0.2m Large beam dt = 5.4m

'
cf 0.25dt '

cf
0.27dt

0.25dt 0.27dt

Interlock shear – localized 

interlockσ
interlockσ

At Vmax

Horizontal 
compressive 
stress Localized 

stress 

Interlock shear 
(vertical component) 

Stresses calculated by microplane crack band model calibrated by Toronto tests

EXPLANATION: In larger  beams, fc’ doesn’t 
get mobilized through the whole cross section

Vinterlock = 40% of Vtotal 5% of Vtotal

                          



Problems with Explaining the Size Effect by Reduction 
in Interface Shear Transfer Resistance (Collins et al.)

 Conflicts with dimensional analysis based 
on known asymptotic properties (the 
asymptotic slope of -1 is excessive, 
thermodynamically impossible).

 Is not general: Doesn’t work for other 
failure types and materials with the same 
kind of size effect (e.g. punching shear or 
compressive crushing ).

 In large beams, the tensile cohesive 
stresses along the diagonal crack at peak 
load are negligible compared to the 
compressive stress parallel to the crack.

 In large beams, the interface shear due 
to aggregate interlock contributes only a 
minor part to the total shear strength, 
although it has an significant effect in 
small beams.

 Localization, with increasing size, of the 
compressive stress profile across the 
ligament above the tip of the diagonal 
crack leads to compressive crushing of 
concrete at peak load.

 Crack spacing is a secondary influence, 
not the primary cause of size effect.

Small Beam Large Beam
Beam top

'
cf 0.25d

'
cf

0.27d
Beam topCompressive 

stress 
distribution
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Compression
splitting & crushing

Fracture mechanics based finite element
simulations support the size effect law:



Structural Failures with 
Evidence of Size Effect



Schoharie Creek Bridge
N.Y. Thruway, 1987

D.V. Swenson  & A.R. Ingraffea



Sleipner A Platform, 
Norway

Sank 23 Aug, 1991
~ 82 m deep water
~ 190 m tall



Failure of Sleipner A Platform

Water, 
67m head 
at failure

T19

T31

D3

Failure

Finite element model

Size Effect :
ft' reduced by 40%

wrong mesh

With post-processing
- shear force 55% of actual

Wrong detail!

Stirrups absent!
- not required by Code
- would increase head to 125m

T-
he

ad
ed

 b
ar

T-headed bars - if elongated 25cm
- 125m head

Assumed failure mode

Kinked reinforcing bars

~ 0.95 m Spalled concrete

Deflection of wall

Spalled concrete
Crack width

Posterior pmax ~ 0.8 - 1.2 papplied!



Kobe 
(Hyogo-Ken 
Nambu) 
Earthquake, 
1995, 
Hanshin 
Viaduct

- size effect due 
to compression 
fracture



Kobe Earthquake 1995, Hanshin Viaduct

The century's worst quakes
Victims Richter scale

1905 Kangra, India 357,000 8.3
1906 San Francisco, California, USA 700 8.3
1908 Messina, Italy 160,000 7.5
1920 Gansu, China 100,000 8.6
1923 Sagami Bay, Japan 200,000 8.3
1976 Tangshan, North East China 695,000 7.9
1985 Mexico City, Mexico 7,000 8.1
1988 Armenia 45,000 6.9
1989 San Francisco, North California, USA 67 7.1
1990 North West Iran 40,000 7.7
1993 South West India 13,000 6.4
1994 Northridge, California, USA 61 6.7
1995 Kobe, Japan 5,000 7.2

- Size effect due to compression fracture (in bending)



Cypress Viaduct (1989)
Nimitz Freeway, Oakland, CA

Hinge

Crack Initiation at Hinge 
Location

Hinge

Cypress Structure :
Typical Bent with Hinged Frames

Hinge

Typical Failure Mode of Bent After Salvadori

Loma Prieta Earthquake



Schoharie Creek Bridge
N.Y. Thruway, 1987

D.V. Swenson  & A.R. Ingraffea



Blvd. de la Concorde, Laval, Quebec, North suburb of 
Montreal, Sept. 30, 2006

Shear Failure—Size effect was a major factor



Wilkins Air 
Force
Depot 
Warehouse,
Shelby, 
Ohio
Failed 1955

Beam Depth: 
0.914 m



Koror-Babeldaob Bridge in Palau
Built 1977, failed 1996. Max. girder depth 14 m, span 241 m (world record).

AA Yee, ACI Concr.Int.
,June1979,22-23



Koror-Babeldaob Bridge in Palau Built 1977, failed 1996.

Our Verdict:  Compression and shear failure, with wave from prestress failure, 
after creep & vertical prestress loss.           Size effect must have been strong.



Reappraisal of Some Structural Catastrophes:
SIZE EFFECT WAS AN IMPORTANT FACTOR!

Strength Reduction
Plain Concrete : Due to Size Effect

• Malpasset Dam, France (failed 1959) 77%
• St. Francis Dam, L.A. (failed 1928) 60%
•   plinth of Schoharie Creek Bridge, 1987 46%

Reinforced concrete :
• Cypress Viaduct column, Oakland, 1989 earthquake 30%
• Hanshin Viaduct columns, Kobe, 1995 earthquake 38% 
• bridge columns, L.A., 1994 Norridge earthquake 30%
• Sleipner A Oil Platform, plate shear, Norway, 1991 34%
•   Warehouse, beam shear, Wilkins AF, Shelby, OH ‘55     32%
•   record-span box girder, Palau , failed 1996 - prelim.:  ?>50%
•   Laval Overpass, Montreal, beam shear, 2006                >40%




Reappraisal of Some Structural Catastrophes:

SIZE EFFECT WAS AN IMPORTANT FACTOR!

		Strength Reduction

                                    Plain Concrete :	Due to Size Effect

•	Malpasset Dam, France (failed 1959)	 77%

•	St. Francis Dam, L.A. (failed 1928)	 60%

    •   plinth of Schoharie Creek Bridge, 1987	         46%	

Reinforced concrete :

•	Cypress Viaduct column, Oakland, 1989 earthquake	 30%

•	Hanshin Viaduct columns, Kobe, 1995 earthquake 	 38% 

•	bridge columns, L.A., 1994 Norridge earthquake	 30%

•	Sleipner A Oil Platform, plate shear, Norway, 1991 	 34%

        •   Warehouse, beam shear, Wilkins AF, Shelby, OH ‘55     32%

        •   record-span box girder, Palau , failed 1996 - prelim.:  ?>50%

        •   Laval Overpass, Montreal, beam shear, 2006                >40%









Evidence from Individual 
Laboratory Tests on
the Same Concrete
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Evidence from Large 
Worldwide Laboratory 

Database
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Restricting Strength Range of Data to Achieve Approximately 
the Same Means of ρw, a/d, da in All Size Intervals
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Filtered Database with Nearly Uniform Steel 
Ratio, Shear Span & Aggregate Size
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Decrease of Safety Margin 
with Increasing Size



Probability Distribution of Shear Strength
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Could we treat entire database as  
a statistical population? No
except for the part of size range 
where size effect is weak

183 data points, all 
satisfy the minimum 
shear reinforcement 
requirement

d < 0.5 m

For d < 0.5 m, lognormal distribution is 
a better description for shear strength 
because of the scatter insulting from 
variability of secondary characteristics, 
e g  ρ  ρ  a/d  



Relation of Size Effect Test Result                      
to pdf of Database

'
cr

c

f
v

Toronto tests (1998-2000)

'2 cc fv =

psi 5365' =crf

1

6

1 100

2
1

36.4 in.

100

Entire database

1

6

10

Small
size

Large
size

'2 crc fv =

= required average
compr. strength

'
crf

(in.) d

'2 crc fv =

'2 cc fv =

Portion of database for 
small size range

12 in.

1

6

3 50

4 in.

1.0%
Log-normal in 
log - scale

Small size

'275.0 cc fv ×=

(in.) d(in.) d

'' 7.0 crc ff ≈
= specified

compressive 
strength

a



610−≈fP

Shift of Resistance cdf Due to Size Increase

310−≈fP

100

Shifted pdf for large beam

1

6

10

Small
size Large

size

'2 crc fv =

Mean
a

a

40%

Failure probability

Load distribution

a

1

6

1 100

a
Mean

Expected resistance 
distribution

Mean
'2 cc fv =

'2 crc fv =
'

cr

c

f
v

Max. Service 
Load

shift
Δ

Δ is due to µ, φ,
load factor, and '' / crc ff

Known resistance 
distribution

(in.) d(in.) d

∫
∞

=
 

0 
d)()( yyFyfP RLf

(No Stirrups)

Great
Risk!



Do stirrups suppress 
the size effect?



Size effect factor for beams 
with stirrups
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Classical tests of geometrically similar R.C. 
beams  made with the same concrete 
indicate that stirrups mitigate but do not 
eliminate the size effect:
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Statistical Bias in Database

1) The data points are crowded in small size range
2) In different size ranges, the distributions of secondary influencing 

parameters are not uniform

Two main causes of statistical bias:
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Regression After Suppressing the Bias

Tiny circles: 
points filtered 
out
Big circles: 
points retained
Blue diamonds: 
interval centroid

Mean ρw = 1.9%
Mean a/d = 3.3
Mean vs = 0.6 Mpa
Mean da = 20 mm

N
om

. S
he

ar
 S

tre
ng

th

Size

Database of 183 points
Beams with Stirrups



Numerical Simulations Based on M4 Model
Calibrated by Toronto Tests

δ/S
0 0.02

1.2

74
.4

Min. stirrups

Toronto beam

d = 18.6 in.

d = 74.4 in.

d = 297.6 in.

vn d = 148.8 in.

d = 74.4 in.
without stirrups

V

V

1 10

v0 = 1.48 MPa
d0 = 2.13 m

d (m)

vc 1

0.5

2
1

ρw= 1.48%

Simulations



Stirrups

3D FEM simulation of beams with stirrups

Stirrups did 
not yield !

Crack pattern is 
the same as in 2D

Max. principal stress flow

d
= 

4.
86

Beam depth d = 4.86m. Microplane model M4



Crack-Band Microplane FEM 
Simulations of 1.89 m Deep 
Toronto Beam, Min. Stirrups

V

Defl. δ/Span L0 0.016

1.2

Test

74
.4

Min. stirrups

Toronto beam

d = 18.6 in.
d = 74.4 in.

d = 297.6 in.

d (m)
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tal
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0.8
v0 = 1.28 MPa
d0 = 5.5 m

d (m)Co
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1 9

1

0.5 v0 = 1.0 MPa
d0 = 2.4 m

Scaled down

Scaled up

fit by SEL fit by SEL

matches 
the test

matches 
the test

log (size)

2
1

2
1

Much
Deeper
Beam

Lo
ad (1.89m)

(7.56m)
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Crack-Band Microplane FEM Simulations of Shear of  
Beams with Minimum Stirrups

v0 = 1.80 MPa

d0 = 2.47 m
v0 = 1.59 MPa

d0 = 1.21 m

COMPARE:
For no stirrups,
d0 = 0.27 m. 
So, the stirrups 
push the size 
effect up by 
~ 1 order of 
magnitude.

(0.94m)

(1.89m)
(3.78m)

d0

Toronto Test



Newly Collected Database for Shear Beams 
with Stirrups

'
cr

n

f
v

D (mm) 1000100

1

10

When the data are 
treated as a statistical 
population



Unequal Safety Margin if Size Effect Ignored

Bhal 1968

Nonlinear 
regression of 
Bhal's size effect 
test on beams 
with stirrups

0.1 1 10

1

10

'
cr

c

f
v

(m) d

'2 cc fv =

ACI

41%
9%5%1%

a

a
a

a

0.3 m 1 m 2 m 6 m

Same a
assumed

Distance 
a is 
calibrate
d here



Failure Probability of RC Beams with Stirrups

Mean of 
maximum loads

0.1 1 10
0.1

1

10

10-310-410-510-6

a

a

a
a

'
cr

c

f
v

(m) d

0.3 m 1 m 2 m 6 m
Bhal 1968

Nonlinear regression 
of Bhal's size effect 
test on beams with 
stirrups

Load distribution

Shear 
strength 
distribution

OK Not OK !



* of individual data points:  (weight) ~ 1 / (number of points in interval)

Weighted 
regression*

in. 67.0  ,3.3/ == addain. 67.0  ,3.3/ == adda

10 100d

'
c

c

f
v

6

10 100d

1

6

'
c

c

f
v

ω = 22.3% ω = 23.6%

2

Weighted 
regression*

Unweighted 
regression*

Centroid 
regression

Centroid 
regression

Unweighted 
regression*

Size Effect Law Fitting Centroids of Filtered
Database with Uniform

%5.1=wρ %5.2=wρ

aw dda  ,/ ,ρ

log (size)

identical identical

(purely statistical inference)



Note: 80% of shear 
load is carried by 
stirrups

a) Design with Stirrups

'
cr

c

f
v

'2 crf

a a

100 1000D (mm)

Pf <<10-6

Mean load 
carried by 
concrete

1

10
d = 1.6 m (63'')

0.1

bw = 98''

d = 63''
3 - #6
each 
face

14 legs of #5 
@ 12 in.

3 layers of 
25 #11

20 - #9 top 
bars

Vu = 1540 kisps  f'
c = 5000 psi  agg. = ¾''

fy = 60 ksi  ρw = 1.90%

d = 67''
3 - #6
each 
face2 layers of 33 #11

bw = 165''

Vu = 1620 kisps  f'
c = 10000 psi  agg. = ¾''

fy = 60 ksi  ρw = 0.93%

b) Alternative Design - No Stirrups

30'' diameter column 
20 feet high

40' - 0''

30'' diameter column 
20 feet high

DL = 1650 kips
LL =   550 kips
Total = 2200 kips, service load  

71''

100

1

5

10

'2 crf

Mean
a

a

Pf = 10-1

'
cr

c

f
v

Wide Beam of Bahen 
Center in Toronto

d = 1.7 m (67'')

Mean 
load 

Load distribution
yet the design 
satisfies ACI code!(concrete carries  only 

20% of shear force)
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Capture Size Effect by Proper Statistical Analysis  

1) The data points are crowded in small size 
range

2) In different size ranges, the distributions of 
secondary influencing parameters are not 
uniform

Two main causes of statistical bias:

6 12 in. 24 48 96
10 100
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Data that remain after filtering Regression of Centroids
Mean in intervals
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Filtered Database with Nearly Uniform Steel 
Ratio, Shear Span & Aggregate Size
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Restricting Strength Range of Data to Achieve                   
Approx. the Same Means of ρw, a/d, da in All Size Intervals
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* of individual data points:  (weight) ~ 1 / (number of points in interval)

Weighted 
regression*

in. 67.0  ,3.3/ == addain. 67.0  ,3.3/ == adda

10 100d
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ω = 22.3% ω = 23.6%
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Weighted 
regression*
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regression*

Centroid 
regression
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regression*

Size Effect Law Fitting Centroids of Filtered
Database with Uniform

%5.1=wρ %5.2=wρ

aw dda  ,/ ,ρ

log (size)

identical identical

(purely statistical inference)



EFFECT OF STIRRUPS:

• Stirrups can push the size 
effect up by an order of 
magnitude of D/l0  but cannot 
prevent it.

• Increasing stirrup ratio in large 
beams is ineffective and can
even reduce the shear strength.



Covert Safety Factors



OVERT understrength Factor

65%, 83.7%
covert u. factors

83.7%
75%

' '( 0.7 )c crf f≈

Design load 1.6L+1.2D or 1.4D

Inverse scale

0.2 0.4 0.6 0.8 1.0 1.5 2.0 5 ∞0

1

2

3

4

5

Toronto
Test - No 
stirrups

Expected 
Mean ± S.D.

'2 cf=

'3.1c crv f=

'1.83c crv f=

'1.01c crv f=

Toronto tests
d = 74.4 in. (1.89 m)  
(from Bentz's memo                                        
to Bažant, Oct.17, 2003)

X, Parameter of Steel Ratio and Shear Span

'
c

cr

v
f

Vc = shear strength contribution of concrete  

Mean = 3.1,  S.D. = 0.68

ACI 1962 
Small-Beam
Database

vc = Vc/bwd

ACI formula

'1.25c cv f=

'2c crv f=
Toronto Test - Min. Stirrups –25%

41%

Overt and Covert Understrength Factors

PARADIGM - Shear Tests of Small Beams

Safety factor ≈ 3.5

Max. service load



Max(1.6 1.2 ,  1.4 ;  ...) f mL D D F+ ≤ ϕ ϕ ϕ

Max(1.6 1.2 ,  1.4 ;  ...)L D D F+ ≤ ϕ

Safe Design Criterion
Currently:

φ = strength reduction (understrength) factor
intended to distinguish brittleness

φ = 0.75 for shear

Problem: F is a fringe formula, involving
Covert understrength factors:

φf — for formula error
φm — for material strength randomness

Required Revision:

φf ≈ 0.65,  φm ≈ 0.83 for shear

F = load capacity by 
design formula



Obscuring Effect of Covert Understrength 
Factors on Forensic Evidence 

Safety factor for shear:
Small beam:

Large beam (for size effect ratio = 2):

1.6 3.8 average
0.75 0.83 0.65

= = =
× ×

ϕ
- range from 2.3 to 7

1.4 1.7 average
0.75 0.83 0.65 2

= = =
× × ×

ϕ
range from 1.05 to 3

Why is the size effect rarely identified, in analyzing disasters?
More than one mistake is needed to bring down a structure.



Failure of Sleipner A Platform

Water, 
67m head 
at failure

T19

T31

D3

Failure

Finite element model

Size Effect :
ft' reduced by 40%

wrong mesh

With post-processing
- shear force 55% of actual

Wrong detail!

Stirrups absent!
- not required by Code
- would increase head to 125m

T-
he

ad
ed

 b
ar

T-headed bars - if elongated 25cm
- 125m head

Assumed failure mode

Kinked reinforcing bars

~ 0.95 m Spalled concrete

Deflection of wall

Spalled concrete
Crack width

Posterior pmax ~ 0.8 - 1.2 papplied!



How to Remedy Misleading Covert
Understrength Factors in Codes
Option 1

•Use mean prediction formulas,               
not fringe formulas

•Use mean material strength                 , 
not reduced strength 

• In addition to the current understrength 
factor ϕ = ϕb , accounting for brittleness, 
impose understrength factors :
− ϕf , for error of formula
− ϕm , for material strength randomness      
and specify their C.o.V.’s ω

For shear: ϕb = 0.75, ϕf = 0.65, ϕm =0.83

( ) c crf f ′or
cf ′

Option 2
•Keep the current fringe formulas

•Keep the reduced strength  

•Specify the implied understrength 
factors

ϕf and ϕm

with the coefficients of variations, e.g.
ωf = 22% and ωm = 19%

and with the probability cut-offs, e.g. 
65% and 75%

cf ′

Only this will render reliability assessment meaningful !
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p

q

Hidden size effect factor:

d

1 2

1 1 2

1.05 1.6
Max(1.4 ,  1.2 1.6 )

  0.75 to 1

Code
N
True
N

C d C
C d C d C

+
= =

+
=

σϕ
σ

Max( ,  1.2 1.61 )

1.05 1.6

.4Code
N
True
N

D D L
D L

σ

σ

= +

= +

Wrong Size Effect Hidden in Excessive 
Self Weight Factor

2

1

1

0.75

0.01 10 10000

Hidden in
load factor

logφ

log( )s ize

  
  

 
   
  

  

Actual

Small
Large

(d = size)
Wrong for:  Flexural vs. shear failure, 
high-strength vs. normal concrete, 
prestressed vs. normal concrete, etc.



Revised Reliability Indices
a) Cornell Index

2 2 2
L R

L Rs sτ

µ µβ −
=

+

i

i

yi
i

yi

y
y

s
µ

τ

−
′ =

b) Hasofer-Lind Index

2

1
min

n

i
i

yβ
=

′= ∑
P f

0

1

chosen
Pf = 10-6

Gaussian

Weibull
xf /µ

Means=1
ω= 0.052
m=24

TG
TW

τ = TW/TG

0

Linearized
failure plane at 
design point
(y1*, y2*) β

y2

y1

Safe 
region
R>L

Failure region
L>R

y1*

y2*

τi = 1 for load
≥ 1 for resistance

Neither FORM nor SORM  but 
EVRM (extreme value RM)



Max(1.6 1.2 ,  1.4 ;  ...) f mL D D F+ ≤ ϕ ϕ ϕ

Max(1.6 1.2 ,  1.4 ;  ...)L D D F+ ≤ ϕ

Safe Design Criterion
Currently:

φ = strength reduction (understrength) factor
intended to distinguish brittleness

φ = 0.75 for shear

Problem: F is a fringe formula, involving
Covert understrength factors:

φf — for formula error
φm — for material strength randomness

Required Revision:

φf ≈ 0.65,  φm ≈ 0.83 for shear

F = load capacity by 
design formula



Size Effect in 
Punching Shear



II. Size Effect in Punching 
Shear of RC Slabs

ACI-445C-Database for Punching of 
Slabs

440 Tests (60 researchers)
d (effective depth of slabs) ranges from 
1.18 in. to 26.3 in (from 30 to 668 mm).
fc (concrete strength) ranges from 1160 
to 17114 psi (from 8 to 118 MPa)
ρ (longit. reinforcement ratio) ranges 
from 0.1% to 7.3%



Formulae in Main Design Codes

Vc=total 
capacity
b0=control 
perimeter
b0E=control 
perimeter (EC)
d =effective 
depth
fc =concrete 
strength
ξ =Size effect 
term in EC
ρ 
=reinforcement 
ratio 
(longitudinal)
ψ =slab rotation 
term (MC)
θ =size effect 
term in 
proposed model

Asymptotic 
slope -1 is
impossible



Database 
Filtering
to reveal the 
size effect 

trend    
without any 
calculations

Unfiltered

Filtered mean 
steel ratio

Filtered 
mean b/d

Filtered 
mean c/b



  
  

   

    

Databas
e 
filtering
(continued)

Mean steel ratios

Mean b/d

Mean c/b



Premise:
1)  The tests relevant to size effect are limited 
and not scaled
2) Microplane model M7 gives generally 
excellent fits of test data on concrete failures

Approach:
• Calibrate M7 parameters by fitting existing 

test data with limited size range and 
different structural geometries

• Then use calibrated M7 to predict the size 
effect by simulating scaled specimens



Calibration of M7 by Multivariate 
Regression 

of Test Data for Effect of Other 
Parameters

Tests by Elstner and Hognestad 1956 Tests by Lips et al. 2012



Cross points hold for finite element 
analysis results (simulations of the 
experimental works)
Circle points hold for the 
experimental results
Solid lines refer to the size effect fit 
of the FEM results

Verification with microplane model M7 
for slabs without shear reinforcement

Tests by 
Bazant and 
Cao, 1987

Tests by 
Regan, 1986

Tests by 
Guandalini and 
Muttoni, 2009

Tests by Li, 
2000



Verification with microplane model, 
for slabs with shear reinforcement

Load-Deflection 
curves of tests 
and 
corresponding 
FEMs

Not
perfectly
scaled
specimens
(1 : 1.6)

Finite element 
models and 
corresponding 
fracture 
patterns 

Perfectly scaled 
FEM  without and 
with shear 
reinforcement

Tests 
of 
Birkle

Tests of 
Lips et 
al.

Test data of Birkle, 2004, and fits by proposed size effect equaton



Proposed model and 
calibration by multivariate 

regression

D = slab thickness, c = side of column, b = its 
perimeter

Data normalized by v0



Size Effect in Torsion

Type I !



Bažant, Z. P., and Sener, S., “Size Effect in Torsional Failure of Concrete Beams,” Journal of Structural 
Engineering  V  113  No  10  1987  pp  2125-2136 90

II. Size Effect in Torsional Failures
Plain concrete beams, solid cross sections

      

Size effect plot (log-scale) Failure pattern

MODEL

AFTER TEST
Tests by Bazant, Sener 
1987
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Size Effect on Torsional Failure

• 3 sizes tested in lab, d = 1.5”, 3”, 6”)
• Size range extended using microplane model M7, to 1:13
• Type I failure – as soon as peak torque is reached

Scaled computed 
torque-twist curves

T 
/ T

ma
x

Twist (deg)

Bažant, Z. P., and Sener, S., “Size Effect in Torsional Failure of Concrete Beams,” Journal of Structural Engineering, V. 113, No. 
10, 1987, pp. 2125-2136.

Plain concrete beams – reduced scale tests



Hsu, T. T. C., “Torsion of Structural Concrete—Plain Concrete Rectangular Sections,” Torsion of Structural Concrete, SP-18, 
American Concrete Institute, Farmington Hills, MI, Jan. 1968, pp. 203-238. 92

Torsional failures : model validation
Plain concrete beams tested by Hsu (1968)

  

10”x20”

10”x15”

10”x10”

6”x19.5”

6”x11”

• Effects of size (and shape) observed in tests 
• Model predictions match tests very well – lends 

confidence to the model  



Hsu, T. T. C., “Torsion of Structural Concrete—Behavior of Reinforced Concrete Rectangular 
Members,” Torsion of Structural Concrete, SP-18, Am. Concrete Institute, Farmington Hills, MI, 

  
93

Torsion of RC Beams: Model Validation

• Note: Strong effect of reinforcement ratio.
• Predictions by calibrated model match tests very 

well – lends confidence to the model

  

B1B1

B2 B3

B4
B5

B6
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Size effect in torsional failuress
Interestingly, is of Type 1, even with stirrups 

Reinforced Concrete Beams (Hsu 1968)
Without stirrups With stirrups

Size D [mm] – log scale

Kirane, K., Darun Singh, and Bažant, Z. P. “Size Effect In The Torsional Strength Of Plain And Reinforced Concrete”, submitted to ACI Structural J.
         

Pure prediction - no test data

N
om

in
al

 s
tr

en
gt

h 
 v

u 
 [M

Pa
]

Test data by Hsu 1968



Size Effect on Columns, 
Prestressed Beam Flexure,

Composite Beams and
Other Types of Failure

See Bazant’s website



Code Articles Requiring Size Effect
• shear of beams without 

and with stirrups
• torsion of beams 
• punching of slabs 
• shear of deep beams 
• bar splices and 

development length 
• all failures due to 

compression crushing 
of concrete, as in
-- columns,   
-- prestressed beams, 
-- arches 
-- bearing strength 
-- strut-and-tie models

• failure of composite beams 
due to failure of connections

• precast concr. connections
-- grouted joints, 
-- shear keys, 
-- connectors, 
-- toppings

• softening seismic failures
• delamination of bonded 

laminate retrofit
• flexure of plain concrete                                                                       
• strength reduction factors 

for brittle failures
• load factors for self-weight
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Thanks for listening

Questions, please?
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