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A REVIEW IN TECHNOLOGIES, DEFINITIONS, 
PROPERTIES AND APPLICATIONS OF ULTRA 
HIGH-PERFORMANCE CONCRETE (UHPC)

Ahmed M. Seyam – György L. Balázs

Concrete technology has changed dramatically during the last decades, where the high-strength concrete 
concept has gone from 30 MPa to well over 100 MPa. In this paper, a review study has been conducted on 
ultra high-performance concrete (UHPC), however, researchers have a lot of definitions for this term, but 
all of them agreed that (UHPC) which refers to cement-based materials exhibiting superior properties, in-
cluding compressive strength higher than 150 MPa with high ductility, and excellent durability. This paper 
reviews the theoretical principles of UHPC, definitions, raw materials, mixture design methods, successful 
mixture components with the required properties, challenges, and some of the successful applications of 
UHPC, focusing on bridge applications. The paper concluded by summarizing the benefits of using UHPC, 
the future of this superior concrete, current challenges and some recommendations for wider use.
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1.  INTRODUCTION
Since Roman times, concrete has been the most used material 
in construction; construction materials development does 
not stop, day by day, concrete expresses new applications 
and an advanced improvement in the construction industry, 
one of the quanta leaps in concrete structures achieved by 
developing the ultra-high performance concrete technology 
(UHPC), UHPC is the new concrete technology provide a 
high level of qualities that had never been possible before. 
During the 20th century, the development of concrete 
technology was significant. In 1950, concrete with 34 MPa 
28-day compressive strength was considered a high-strength 
material. At present, these values can reach well over 200 
MPa. A timeline of concrete development is shown in Table 1 
(Buitelaar, 2004; EFNARC, 2005).

The significance of this paper is to review and present 
the crucial components and characteristics of ultra-high 
performance concrete (UHPC); highlighting the UHPC 
definitions, design methodologies, features, challenges, and 
some successful applications in construction. (Table 1)

2.  UHPC DEFINITIONS
Researchers defined the term UHPC in different forms; 
definitions have been given to UHPC according to their 
major components, Farzad et al. (2019) define ultra-high-
performance concrete as a cement-based material created 
with an enhanced gradation of granular components, with less 
than 0.2 water-to-cement ratio (w/c) and significant internal 
portions of fibre. Azmee & Shafiq (2018) mentioned that 
UHPC is a fibre-reinforced, super plasticized, silica fume-
cement mixture with a very low water-to-cement ratio, with a 
presence of fine quartz sand instead of the coarse aggregate. 
Mishra & Singh (2019) concluded that UHPC is a particular 

type of concrete consisting of a high fine-grained reactive 
admixture, including fine quartz and silica fume, fibres and 
superplasticizers while having low w/b ratio and a high 
binder content. Ahmad et al. (2016) define the UHPC as a 
concrete mixture produced using high cement contents, silica 
fume, superplasticizer, and very fine quartz, quartz powder, 
and fibres without coarse aggregate. Nematollahi et al. (2012) 
also define the term of ultra-high-performance concrete with 
a cement-based composite material with less than 0.25 water-
cement ratio, which consisting fine materials with optimized 
grading curves and very high strength discrete micro steel 
fibres. 

In the other hand, a lot of researchers defined the UHPC 
based according to its superior durability and mechanical 
properties. Bajaber & Hakeem (2021), defines UHPC as a 
new generation of cement-based material which has very 
high compressive strength, high ductility, and sustainability 
based on the optimization of fine and ultrafine aggregates ( 
such: the silica fume and sand), low water to cement ratio 
with added superplasticizer, and reinforced by a high strength 
steel fibre. Li, J. et al. (2020) defined the UHPC term as 
an innovative composite material that can be a potential 
candidate for concrete structures exposed to aggressive 
environments. Aroraa et al. (2019) define the UHPC as a multi-
scale microstructure material tailored for high mechanical 
properties, i.e., very-high compressive strength, high flexural 
tensile strength, and high ductility material compared with 
ordinary concrete. Moreover, some of the researchers adopt 
comprehensive definitions combining both characteristics. 
For example, the Association Francaise de Genie Civil 
(AFGC) defines UHPC as a material with a cement matrix 
and a characteristic compressive strength in excess of 150 
MPa and containing steel fibres in order to achieve ductile 
behaviour. The Japan Society of Civil Engineers (JSCE) 
defines the UHPC as a type of cementitious composite 
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reinforced by fibres with characteristic values more than 
150 MPa in compressive strength, a minimum first cracking 
strength of 4 MPa. ACI 239R (2018) defines UHPC as a fibre-
reinforced concrete that has a minimum compressive strength 
of 22 Ksi (150 MPa) with high durability, tensile ductility, 
and compliance with the toughness requirements.

3.  UHPC MATERIALS
The general formulation of UHPC consists of a high binder 
content, including Portland cement, the essential factor in 
achieving better UHPC is optimizing the mixture’s micro 
and macro characteristics. Cement, silica fumes, and sand 
grain size distributions must be tuned to create high capacity 
and, hence, a thick matrix with extremely low permeability 
(Salahi et al., 2021). Materials are carefully selected to 
ensure mechanical homogeneity, maximum particle packing 
density and minimum size of flaws (Balázs, G. L., 2015); 
(Schmidt et al., 2005); (Vernet, 2004); (Shah, Weiss, 1998); 
(Wille et al., 2011); (Shi et al., 2015). Thus gravel or coarser 
aggregate is usually replaced in UHPC mixes to avoid the 
formation of high voids and to create a densified interfacial 
transitional zone around the aggregates, thus, eliminating the 
weakest region within the matrix (Morcus, Akhnoukh, 2007), 
(Akcaoglu et al., 2004). 

3.1 Binders
Generally, Portland cement is used as the primary binder to 
produce UHPC. For UHPC, cement content is usually (about/
more than 700 kg/m3), about double the cement amount 
in the normal strength concrete. Cement was chosen for 
many reasons, the low C3A content, which minimizes the 
water demand of cement, ettringite formation, and heat of 
hydration, as indicated by De Larrard (1994) and Richard, 
Cheyrzy (1995). It also has low alkali content, low to medium 
fineness, and availability. 

3.2 Fillers and aggregates
Fine sand and coarser aggregates are generally inexpensive 
inert materials used as fillers when making concrete. In 
concrete technology, especially UHPC concretes grading 
fillers and aggregates, maximum and minimum sizes are 
crucial. Quartz sand is used in the mix because of the high 

hardness, good paste aggregate interfaces, and chemical 
inactivity in the cement hydration reaction (Koh et al., 2018). 
The mean particle size is often smaller than 1 mm. Right 
proportions will result in a denser, more packed mix with a 
lower water demand due to fewer free inter-particle spaces, 
eliminating the coarse aggregates and improving the durability 
of UHPC. The optimization will yield a higher compressive 
strength, better rheology and lower water demand, which are 
essential characteristics of UHPC properties. 

Using inert materials and coarser fillers will also decrease 
the concrete’s shrinkage since the cement paste’s volume is 
smaller, resulting in lower autogenous shrinkage and, thus, 
lower cracking risk (Wu et al., 2017). 

3.3 Micro fillers
The most commonly used micro fillers are silica fume which 
reacts with CH (Calcium hydroxide) through pozzolanic 
reaction, and quarts fillers, which can be activated when 
exposed to high curing temperatures. Other micro fillers 
investigated and used are pulverized fly ash, lime-stone, 
metakaolin or micronized, and phonolite (Cwirzen,  Panttala,  
2006).

The smallest component, with a 0.2 μm diameter, serves 
three basic functions in UHPC, it fills voids between cement 
grains, forms hydration products by pozzolanic activity, and 
enhances the rheological characteristics. Silica fume reacts 
with the cement hydration product of portlandite (Ca(OH)2) 
and water, which forms calcium silicate hydrates (C–S–H), 
this formation known as the pozzolanic (Oertel et al., 
2014). The pozzolanic reaction makes the cement matrix 
denser, ultimately enhancing and improving the mechanical 
properties of UHPC (Zhang et al. 2016).

3.4 Fibres
UHPC behaves in a linear-elastic manner along the largest 
part of the stress-strain curve under loading and has a failure 
mode with very limited post-crack behaviour, which causes a 
rigid failure. The incorporation of fibres mainly aims to bridge 
forming cracks and transfer loads to induce ductile behaviour 
and to increase flexural strength (Cwirzen, Panttala, 2006). 
Seyam et al. (2020) mentioned that incorporating 16% of 
steel fibres and 0.75% polypropylene fibres according to 
cement weight increased the compressive strength by 28% 

Table 1:  Development of concrete materials (in terms of strength)

Year History

1824 Portland cement is first developed.

1849 Reinforced concrete evolves with the addition of metallic reinforcement.
1950 Concrete with 34 MPA strength was considered as high strength.
1960 High-strength concrete developed in the laboratory reached 80 MPa.

1980

Army Corps of Engineers for the United States were the first user of UHPC in the 1980s, though UHPC 
did not become commercially available in the U.S.

High-performance concrete for use mainly in security and defence applications was developed in Den-
mark compressive strength 100 Mpa.

1985 The first research program was conducted on the application of UHPC.
1997 The first bridge partly composed of UHPC was constructed in Canada
2002 First recommendations for using UHPC were published in France.

2005 and forward Many research programs are looking at the use of UHPC in different structures worldwide. At least 90 
bridges have been built and the use of UHPC has been implemented in many other types of structures.
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and the flexural strength by 58%. Shehab et al. (2016) 
mentioned that longer fibres (length to diameter (l/d)=50) 
increased compressive and flexural strengths slightly more 
than shorter fibres (l/d=30) with the same diameter of the 
fibre. Shin et al. (2021) studied the effect of the shape of steel 
fibres and mentioned that the twisted steel fibres had a greater 
pull-out resistance than straight steel fibres with a circular 
cross-section, and its efficacy increased as the number of ribs 
increased. In comparison, the straight steel fibre demonstrated 
the best flexural behaviour in both uniaxial and biaxial stress 
states, but the six-times twisted steel fibre displayed the 
poorest flexural behaviour due to the composites’ high bond 
strength.

One of the more significant problems related to using fibres 
in concrete is ensuring correct fibre orientation and an even 
distribution within the binder matrix. When poured, fibres 
tend to orient themselves in the direction of the concrete 
flow, which, if done improperly, can cause the fibres to orient 
themselves in unfavourable directions leading to worse 
mechanical properties (Schmidt, 2005).

3.5 Chemical admixtures
The UHPC mixtures require a relatively high dosage of 
chemical admixtures, specially high-range water reducers 
(HRWR), HRWR commercially known as superplasticizers 
(Akhnoukh, Buckhalter, 2021). Superplasticizers are long-
chain polymers or co-polymers with negative charges used 
as high-range water reducers in the concrete mixture. It’s a 
material used to disperse cement particles and silica fume, 
which improves the workability of UHPC mixes (Voo, Foster, 
2010). Adding superplasticizers not only improves concrete 
workability or flowability but also the particle dispersion 
homogenizes the concrete material significantly (Zhu et al., 
2021). 

Thus, superplasticizers facilitate the achievement of 
using a lower water/binder (w/b) ratio without affecting the 
workability of the mixture. In the case of UHPC, the optimum 
amount of superplasticizer is relatively high and its dependent 
on the w/c with a solid content that is approximately 1.6% of 
the cement content (Ghafari et al. 2016). 

3.6 Water
UHPC effectiveness mix could be made not by minimizing 
water content but by maximizing the relative density (Tayeh, 
Abu, 2013). The minimum w/b ratio for a workable concrete 
mixture is about 0.08 (Ghafari et al. 2016). By increasing the 
w/b ratio to above 0.08 to about 0.13, air will be replaced 
by water without increasing the volume of the mixture. In 
case of increasing the water-to-binder ratio beyond 0.13, the 
volume increases due to the additional water and as a result, 
the density of the mixture decreases dramatically. Thus, the 
optimum w/b ratio should be practically tested and selected to 
be slightly toward the higher values of the w/b ratio to ensure 
that the w/b ratio of the real mix is slightly higher than the 
theoretical optimum (Graybeal, 2006).

Richard and Cheyrezy (1995) found that the optimum w/b 
ratio is 0.14 as the optimal for UHPFRC, which is almost 
the same conclusion for De Larrard and Sedran (1994) 
study, where a solid suspension model was used. The result 
also agrees closely with that of Gao et al. (2005), where an 
optimum w/b ratio of 0.15. As mentioned, most of UHPC’s 
previous mixes standed to trial mixes, which could achieve 
superior performance by a higher w/b ratio in the presence of 
additive materials.

3.7 UHPC mix design
One of the most significant aspects of UHPC manufacturing 
is the mix design. It focuses on improving the qualities of 
fresh and hardened concrete and optimizing the concrete 
properties. Optimizing particle packing density for the 
granular components of UHPC has been regarded as the 
essential idea for mix design in improving workability, 
strength, and durability (Schmidt and Fehling, 2005). When 
fibres are added to UHPC to improve its ductility and energy 
absorption capability, but negatively affects the workability. 

In general, compressive strength of UHPC is higher 
than 150 MPa; the specific mix design procedures are not 
commercially available as they are for conventional concrete. 
Most researchers have provided mixture proportions of 
UHPC after many trials with no specific design procedures 
reported (Yu et al., 2014), (Shi et al., 2015).

In reality, trial and error modification of current UHPC 
recipes from the accessible literature is widespread for UHPC 
mix creation. This practice›s success is hampered by the 
fact that the input materials come from a variety of sources. 
Several difficulties are associated with initiating a UHPC 
design utilizing area market materials. Figures 1 and 2 show 
the mixing proportions for UHPC mixes, which succeeded in 
producing concrete with compressive strength 150 MPa and 
more.

The procedure of defining the concrete mixture proportion 
is different for every researcher, but most of them have the 
same concept, for example, Richared and Cheyrezy (1995), 
Alkaysi and El Tawil (2016), Seyam et al. (2020), Habel 
et al. (2006), Aoude et al. (2015), Deeb et al. (2012). Azad 
and Hakeem (2013), Ma et al. (2002) and Wille (2013) go 
to the same way of replacing the coarse aggregates by fine 
aggregates with a high amount of binder and low b/w content. 
Table 2 shows the range of UHPC constituents materials used 
in various studies to produce UHPC successfully.

Table 2: UHPC components (Ghafari et al., 2015)

Components Weight (kg/
m3)

Volumetric 
(%)

Binder / Cement 693-1114 22-35
Sand 733-1340 28-51
Crushed quartz 0-208 0-9
Silica fume  116-273 5-13
Fibres 79-234 1-3
Superplasticizer 14-40 1.4-4
Water 140-240 14-24

4.  UHPC APPLICATIONS
The increased strength and durability of UHPC are primarily 
attributable to improved particle gradation, which results in 
a highly densely packed mix, a very low water-to-powder 
ratio, and the utilization of steel fibres. UHPC is a desirable 
material due of its unmatched strength and durability and it 
became an attractive material for bridges construction, In 
1997, a brave application was made in Canada, the very first 
prestressed hybrid pedestrian bridge over the Magog River in 
Sherbrooke was built using UHPC, this use for UHPC opens 
the door for using this superior concrete in bridges. In 2001 
France constructed Bourg-les-Valence bridge made for cars 
and trucks, a year after South Korea built a bridge with a 
main span of 120 m using UHPC, in 2003 Japan also joining 



108 2023  • CONCRETE STRUCTURES   

the UHPC world, by constructing Sakata-Mirai footbridge 
with 50 m span. Following the success of UHPC bridge 
construction, in 2005 the construction of four bridges started 
at the same time, the Papatoetoe footbridge in New Zealand, 
the Shepherds Gully Creek Bridge in Australia, the Bourd-
les-Valence bridge in France, and the Horikoshi C-ramp 
bridge in Japan. Since then UHPC application in bridges 
became more and more popular around the world. In 2013, 55 
bridges in total have been built using UHPC in United states 
and Canada in addition to around 22 in Europe and 27 in Asia 
and Australia and more recent bridges mentioned in Table 3.

UHPC can be used as beams, girders, deck panels, 

protective layers, field-cast joints between different 
components, etc. (Tirimanna, 2013), (Graybeal, 2013), 
(Musha et al., 2013), (Park et al., 2013), (Brugeaud, 2013), 
(Kim et al., 2013). Compared to standard reinforced concrete 
bridges, most bridges constructed using UHPC components 
or joints have a slender shape, a considerable reduction in 
volume and self-weight, a speedier construction process, 
and increased durability (Graybeal, 2006). The majority of 
UHPC constructions need less than half the section depth of 
conventional reinforced or pre-stressed concrete components, 
resulting a huge weight reduction (Perry, 2006). This lighter-
weight construction and materials efficiency used in UHPC 

Fig. 2: The compressive strength of each researcher’s mix

Fig. 1: UHPC materials and mixture proportions
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structures lead to a sustainable structure through its lower 
carbon footprints (Voo, 2010).

The application of UHPC is not limited to bridges; UHPC 
is recommended for tunnel construction owing of its greater 
strength and fire resistance, which are critical characteristics 
for this type of building. UHPC’s strength and durability 
make it an appropriate material for seismic columns as well. 
This is a novel method of designing earthquake-resistant 
columns; UHPC components are also employed in green 
energy, where they are used to build larger wind turbine 
towers. By increasing the strength and reducing the section 
size of the towers, we can enhance their production and create 
more renewable energy.

UHPC is the solution to concerns regarding the degradation, 
maintenance, and replacement of highway infrastructure. 
Due to its longer life and reduced lifetime cost, it is the 
ideal material for repairing and replacing existing roads and 
bridges.

5.  UHPC CHALLENGES
UHPC is used in many applications around the world, but this 
use is still very limited compared with ordinary concrete, a lot 
of challenges still face the UHPC for wider implementation, 
as the benefits of this innovative material are still not well 
known. 

Key challenges that must be addressed to provide a higher 
level of convenience to stakeholders, designers, contractors, 
and manufacturers to successfully implement UHPC in the 
field including, developing a logical and accurate method for 
optimizing UHPC components and mixture design to ensure 
the successful development and implementation of UHPC on 
a larger scale, some properties of UHPC affected by the fibre 
orientation in the mixture like the flexural tensile strength, 
therefore, it is necessary to develop a reliable method that 
allows efficient distribution of fibres in its concrete matrix 
in the desired direction, especially when the work with small 
sizes elements.

The shrinkage strains in UHPC mixes are much greater 
than those in conventional concrete. As a result, specific 
additives or preventive measures are required to address 
dimensional stability difficulties, particularly in large-scale 
structures.

The high strength properties of UHPC’s and durability 
are heavily dependent on heat treatment. As a result, unique 
measures for on-site and precast heat treatment of the building 
should be investigated.

Due of the UHPC’s extremely low w/c ratio, high-power 
mixers are necessary to adequately mix its constituents. 
Additionally, many adjustments to off-site mixers are 
necessary for the effective manufacture of precast UHPC 
parts.

The generally acknowledged, simple, and reasonable 
design requirements for UHPC (reinforced and unreinforced) 
should be designed to provide the design engineer confidence 
in the effective application of the UHPC’s high strength and 
other special qualities.

6.  CONCLUSION
Ultra high-performance concrete, the new generation for 
wider concrete applications and solutions, it has a superior 
level of qualities that had never been thought possible 
before. After reviewing the subject thoroughly, the following 
conclusions were found:

It was clear that the majority of researchers at the state-
of-the-art highlighted that UHPC exceeds all expectations 
in terms of mechanical and environmental performance, 
emphasizing the possibility of more fantastic applications in 
building.

The mechanical properties of the UHPC are greatly 
superior to the properties of ordinary concrete. These 
incomparable values are a function of water to binder ratio, 
ultrafine powders, optimized packing of particles, method of 
curing, and microstructural reinforcement.

This technique enables the construction of buildings that 
are lighter, bigger, or have a greater span than conventional 

Table 3: Applications in Bridge engineering

Year Location Name

2017 China Yuan Jiahe Bridge

2015 China Fuzhou University Land-
scape Bridge

2013 United States and 
Canada

55 bridges 
using UHPC have been built 

or are under construction 

2013 Czech Republic Celakovice Pedestrian Bridge

2010 Austria WILD Bridge

2010 Malaysia Kampung Linsum Bridge

2009 SouthKorea Office Pedestrian Bridge

2008 United States Cat Point Creek Bridge

2008 United States Jakway Park Bridge

2008 France Pont du Diable Pedestrian 
Bridge

2008 Japan GSE Bridge

2007 Canada Glenmore Pedestrian Bridge

2007 France Pinel Bridge

2007 Germany Friedberg Bridge

2006 United States Mars Hill Bridge

2006 China Luan Bai trunk Railway 
Bridge

2005 Japan Horikoshi C-ramp bridge

2005 France PS3, Bridge (Bourd-les-Va-
lence bridge)

2005 Australia Shepherds Gully Creek 
Bridge

2005 New Zealand Papatoetoe footbridge

2003 Japan Sakata-Mirai footbridge

2002 South Korea Peace Bridge (Seonyu foot-
bridge )

2001 France Bourg-les-Valence bridge 

1997 Canada Sherbrooke Overpass
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designs. Due to its exceptional workability, new concrete 
may be cast in irregular or extremely thin forms to create 
structures with an exceptionally aesthetic look or finish.
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