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SUMMARY

A special discrete and smeared representation of reinforcement to be used in nonlinear
finite element analysis of prestressed and reinforced concrete structures is presented. In
this technique the main reinforcing bars of arbitrary type and location can be
represented using a discrete model independent of the concrete finite element mesh.
Whilst the secondary reinforcement and/or stirrups are represented by a smeared model.
Lagrange and Serendipity quadratic and cubic isoparametric elements with movable
side and interior nodes are used. A contact element with different bond conditions is
used to model the bond behaviour between concrete and steel. The frictional force in
prestressed tendon is easy to represent.
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1. INTRODUCTION

The discrete modelling of steel reinforcement is the first approach used in the finite
element analysis of reinforced concrete structures. It was originally suggested by
[NGO/SCORDELIS 67] in their earliest published application.

In the discrete model the reinforcing bars are generally modelled as separate elements,
commonly truss or cable elements. The location of the steel elements is determined by
the layout of the reinforcement. Consequently, the boundaries of the concrete elements
have to follow the reinforcing bar. The discrete representation of reinforcement is the
only way of accounting for bond slip and dowel action directly. The main disadvantage
is that the finite element mesh patterns are restricted by the location of reinforcement
and consequently the increase of the number of concrete elements and Degrees Of
Freedoms (DOFs) [HOFSTETTER/MANG 95].

In order to allow independent choice of concrete mesh, [EL-MEZAINI/CITIPITOGLU 91]
used a Serendipity isoparametric element with movable side nodes. In their presentation
a line as two node truss elements is used to represent the steel, although a quadratic or
cubic isoparametric element for concrete is used. In this way the compatibility between
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concrete and steel elements cannot be guaranteed. Also the representation of the cable
layout is approximated as straight elements.

Embedded models allow an independent choice of concrete mesh. So the same type of
elements with the same number of nodes and DOFs are used for both concrete and steel.
The disadvantage of this model is that additional DOFs, increase of the computational
effort and a special reinforcement element are required.

In the smeared model the reinforcement is characterised by smearing the reinforcing bar
to thin layers of mechanically equivalent thickness within a particular concrete element..
However the smeared model only makes sense for uniformly distributed reinforcing
bars.

2. NODE MAPPING DISTORTION

Mapping distortion occur when mapping unequally spaced node locations on the sides
and interior of the physical element to equally spaced nodes of the parent element. A
singular Jacobian matrix is obtained if the edge nodes are moved sufficiently from their
normal positions. To allow for flexibility in locating side and interior element nodes, a
correction technique for avoiding or minimising this distortion was developed by
[CITIPITOGLU/NICOLAS 72] for Serendipity elements and [CELIA & GARY 84] for
quadratic two dimensional element. Side nodes are positioned at the same relative
distance from corner nodes in both physical and the isoparametric unity element.

The Lagrange shape functions are in principle the shape functions of the Serendipity
element extended to the influence of the additional interior nodes.

Therefore all shape functions must fulfil the following constrain conditions:
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where:

NLi: are the Lagrange shape functions,
n: is number of nodes per element.

The shape functions for the sides and corner nodes are:
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NSi: are the Serendipity shape functions
m: is the number of interior node equal to 1 for quadratic and 4 for cubic (see Fig. 1 , 2).

The interior shape function for quadratic element (node 9) is:
( ) ( ) ( )999 ,,, ηηξξηξ QQN L ⋅= (3)



3

with:
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If ( )ξ η9 90 0= =, , the shape functions will be the standard Lagrange shape functions.

The interior nodes shape functions for a cubic Lagrange element , is.
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Figure 1 Quadratic and cubic isoparametric element with movable nodes

To demonstrate the effect of node distortion a square plate will be considered as a plane
stress element with 9 nodes (see Fig. 2). An elastic linear analysis with the standard and
modified shape functions is carried out.

The node Number 5 and 8 have varied positions. The displacements at the node 9 are to
be considered. The materials used are E = 10000.0 kN/m2 ,L=2.0m ,ν=0 and q=30
kN/m.
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As seen in (Figs 3a&b) if the nodes 5 or 8 are moved far enough away from their
normal positions, a singular Jacobian matrix will be obtained.

Figure 2 Plate Element and Finite Element Modelling
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Figure 3 Displacement at Node No. 9 using Modified and Standard Shape Functions

3. MESH GENERATION

As shown in Figure 4 the desired concrete mesh is first selected independently of any
reinforcement bars. The secondary reinforcement mesh is set identically to the concrete
mesh. Then the concrete side nodes are moved to the points of intersection between the
reinforcing bar and the edges of the concrete mesh. The interior node(s), (one node in
the case of quadratic element or 2 nodes in the case of the cubic element), are moved to
be an interior node(s) of the steel bar. The nodes of the smeared model are moved
identically to the concrete model.
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Figure 4 Mesh generation using discrete and smeared element

4. CONCRETE STEEL INTERACTION

Using of the discrete model for representing the main reinforcement has the advantage
of representing different material properties more precisely. Different bond conditions
at different nodes can be directly and easily represented.

The contact element developed by [KEUSER & MEHLHORN 85] is used to describe the
bond behaviour between steel and concrete. In this model the vertical and horizontal
relative displacement between concrete and steel in the local coordinates of steel tendon
can be considered. This element is an isoparametric element and it has, at the unloaded
stage, no physical dimension in the transverse direction. It has two to four double-nodes
and uses linear, quadratic or cubic interpolation functions. In the contact interfacing the
two elements connected by a contact element have independent element nodes.

In many cases specially in linear analysis  the vertical relative displacements are too
small compared to the horizontal displacements and can be disregarded. That means that
the concrete and steel have the same DOF in local y-direction while they have different
DOF in x-direction which are connected to the contact element. The local x-axis is
assumed to be parallel to the tangent of the steel tendon.

5. ANALYSIS CONSIDERATION

5.1 Perfect bond analysis

Under service load conditions or in simple linear analysis, it is assumed that the steel
tendons are perfectly bonded to the concrete. In this case, there is no slip. This means
that the concrete and steel nodes occupying the same location have the same degree of
freedom. The stiffness of the steel elements is directly added to the corresponding DOFs
in the global stiffness matrix.

5.2 Analysis with no bond

The stiffness matrices of the steel element are calculated in local axis at the node of no
bond. The concrete element stiffness matrices are calculated in global axes, then they
are transformed to the steel local axes at the common nodes. In local y-direction the
concrete and steel have the same DOFs, but in local x-direction concrete and steel have
different DOFs., The final displacement at the common points with no bond are
obtained in the rotated axes. They can be transformed to the global axes.
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5.3 Analysis with bond law

In this case two methods are available:

a) Considering the vertical and horizontal relative displacement.

In this case a double node contact element connects the steel and concrete elements. The
steel and concrete elements have different DOFs in x- and y-directions see.

b) Considering only the relative displacement along the steel tendon

The solution routine is the same as in the no bond case except that the contact element
connects the steel and concrete along the steel axis. The steel and concrete have the
same DOFs at the common nodes perpendicular to the tendon tangent.

5.4 Representation of the friction force:

The frictional force at the common concrete and steel nodes can be represented as a
force along the steel element affected at the corresponding steel’s DOF and opposite
force affected at the concrete’s DOF at the same node.

The frictional force is added to the element force and will be considered in the solution
routine (see Fig. 5).

Figure 5 Friction Force Representation

6. NUMERICAL EXAMPLES

The element formulation described above is implemented in the Computer program
SEGNID. This program has a nonlinear element library for concrete and steel.

[BRESLER/SCORDELIS 64] have conducted numerous tests on a series of reinforced
concrete beams to study the failure modes of these beams. The experimental results are
considered to be very reliable, so the beams almost become a benchmark for testing of
analytical and numerical formulations. Two of these beams with different layouts XOB-
1 and XB-1 are analysed using the computer program SEGNID. The two beams are
simply supported reinforced concrete beams of 12 ft (365.76 cm) span length, with
cross sectional dimension 27.75 x 9 in (70.5 x 22.86 cm), (see Fig. 6). The beams are
subjected to central concentrated load until achieving the failure load. The
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reinforcement and failure loads are shown in Table 1. The beam XOB-1 is also analysed
by [KOMPFNER 83] and [CERVERA/HINTON 86] with layered plate elements for their
study of the three dimensional nonlinear analysis of reinforced concrete plates and
shells.

Taking advantage of symmetry, only one half of the beam with different mesh
idealisation is considered mesh (A)-(D) (see Fig. 7) .

Figure 6 XOB-1 and XB-1 Beams Layout
Table 1. Reinforcement in the two Beams
Properties XOB1 XB-1
Bottom Reinf. 4 #9 4 #9= 4 in2

Top Reinf. -- 2 # 4 =0,372 in2

Stirrups -- # 2 - 7.5 in
Failure Load 57.5 90.0 kips

Table 2. The material used in analysis (ksi)
Properties XOB-1

(kips)
XB-1 (kips)

Ec 3300 4120
fc 3.16 3.56
ft Variable 0.572
εcu 0.003 variable
Es 27800 *
EH 0 0
fy (Bottom) 90.6 90.6
fy (Top) 50.4 50.4
*Es = 27800, 28200 and 29500 for #9, # 4 and #2 respectively .

Table 3. Failure Load for XOB-1 Beam
ft Mesh A Mesh B Mesh C Mesh D
0.333 58 56.5 58 56,5
0.565 62,7 60.5 62 60

Figure 7 Finite Element Meshes for XOB-1 Beam
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The experimental failure loads are reported to be 57.5 kips and 90.0 kips for XOB-1 and
XB-1 beam  respectively.

The value of the concrete tension strength is assumed variable. The iteration tolerance in
analysis for all meshes is 0.1%. An elastoplastic concrete material model with quadratic
hardening function developed by [DINGES 87] was used. The effect of the tension
stiffening parameter will be not discussed here. The failure load is calculated using the
different meshes and different concrete tension strengths (Table 3).

Figure 8 shows the load displacement curve compared with the experimental values
using mesh C and different value of concrete tension strength.
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Figure 8 Mid-Span Load Displacement
Diagram

Figure 9 Effect of the Crr on the Steel
Stress

To see the effect of the bond model a simple bond model was used to consider the bond
between steel and concrete. It is assumed that Crr (The modulus of Elasticity of the
contact element) is constant until ∆r achieves the limit value ∆1. Then the Crr are set to
equal zero.

Using Mesh B the effect of the value of Crr on the bottom steel stress at P = 7 kips is
shown in figure 9, where at this load stage there is no crack in concrete. The end nodes
of the steel are assumed to be fixed to the concrete node. The relative displacements
normal to the steel elements are disregarded. The effect of no bond is represented when
Crr =0. It is obvious that when there is no bond the steel stress is constant, but when the
two ends are free, the steel stress is practically zero. With a high value of Crr the steel
stress is almost identical to a perfect bond.

The failure mode of beam XOB-1 is a diagonal-tension failure (D-T). The Crack
progress at the Gauss points at the load case P=14 and 56 kips. is shown in Figure 10.
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Figure 10 Cracks Propagation of the XOB-1 Beam

The Beam XB-1 has a shear compression failure (V-C). So the value of the ultimate
concrete compressive strain has an important effect on the failure load in the analysis.
Mesh B was considered in the analysis of XB-1 beam. The stirrups are represented by a
smeared model and the main reinforcement by a discrete model (see Fig. 10). The
failure load reported in the experiment was 90 kips. The effects of the ultimate concrete
compressive strain (εcu) on the failure load are shown in Table 4. A very good
agreement with the experimental result was achieved using εcu values between 0.0035 to
0.004.

Table 4. Effect of the Ultimate Compressive Strain
εcu 0.0025 0.003 0.0035 0.004
Pu (kips) 70 77 86 91
Error(%) 22.2 14.4 4.4 1.1
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