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SUMMARY

In this paper, an analysis of the stochastic distribution of structural resistance of a
reinforced concrete one-span girder is presented. The stochastic characteristics of the
structural resistance are determined with three different methods: second-moment
analysis, Monte-Carlo simulation and stochastic finite element method. The results
derived from the different methods are compared with each other and also with the
structural resistance calculated according to EUROCODE 2.
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1. INTRODUCTION

Our research is related to safety of reinforced concrete beams subjected to combined
stress. An appropriate method for solving large mechanical problems involving
uncertainties is the stochastic finite element method (SFEM), hence we choose this
method for the numerical safety analysis. We have implemented the SFEM on a beam
model considering the material behaviour of the reinforced concrete. On the basis of the
theoretical model, a computer program for calculating the safety of reinforced concrete
beams subjected to compression, biaxial bending and torsion has been developed. The
equations related to SFEM are formed in such way that globally acting forces can be
compared with structural resistance at system level that makes it possible to judge the
safety of a complex structure with one numerical value.

Beside the evaluation of safety of reinforced concrete beams, we also want to examine
the applicability of the implied method. The purpose of this paper is to present an
examination related to validity of probability distribution supposed by the applied
SFEM. The knowledge of the distribution of structural resistance is essential when
determining the safety of a structure. The SFEM generally provides the first two
moments of the structural resistance only, and its distribution is supposed to be normal.
We have made a comparison between the distributions obtained from SFEM analysis
and Monte-Carlo simulation. In the paper, the results of this comparison are presented.
The stochastic finite element analysis has been carried out on a reinforced concrete
beam subjected to uniaxial bending, using 1D beam finite element model.
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2. ANALYSED STRUCTURE

2.1  Structural dimensions and material properties

The computations were carried out on a simple reinforced concrete one-span girder with
a box section and uniformly distributed load (Fig. 1).

Fig. 1  Figure and cross section of analysed reinforced concrete one-span girder

Tab. 1 presents the most important material properties of the applied concrete and the
reinforcement according to EUROCODE 2.

Concrete Reinforcing steel
C40/50 B500B

fck [N/mm2] 40 fyk [N/mm2] 500
fcd = fck/γc [N/mm2] 26.67 fsd = fyk/γs [N/mm2] 434.8

εcu [‰] 3.5 εsu [‰] 35
α 0.85 Es [N/mm2] 200000

Tab. 1  Material properties of concrete and reinforcing steel

In the calculations, a parabolic stress-strain relation for the concrete and a bilinear
(elastic-plastic) stress-strain relation for the reinforcing steel was used (Fig. 2).

Fig. 2  Stress-strain diagrams for concrete and reinforcing bars

The stress-strain relation for the concrete presented in Fig. 2. was proposed by M. P.
Collins (Szalai, 1990) and it can be expressed as:
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2.2  Stochastic characteristics of input parameters

During the stochastic analysis of structural resistance, the width (b) and height (h) of the
cross section, the concrete cover (a) and the strength of concrete (fc) and reinforcing
steel (fs) were treated as random variables. The standard deviations of cross sectional
width and height were determined on the basis of the concerning permitted limit values
given by EUROCODE 2. The standard deviation of concrete cover was derived from
experiments carried out by J. Almási (Almási, 1987). The mean values and standard
deviations of strength of concrete and reinforcement were computed according to
specifications of EUROCODE 2, and the skewness of these parameters was taken from
the Hungarian Standard (MSZ 4720-80). Stochastic properties of the input parameters
are summarised in Tab. 2.

Parameter Mean value Standard
deviation [%] Skewness

b 200 mm 2.13 0
h 250 mm 2.19 0
a 30 mm 18 0
fc 48 N/mm2 10 0.48
fs 554.75 N/mm2 6 0.28

Tab. 2  Stochastic properties of the input parameters

2.3  Resistance of the structure according to EUROCODE 2

In this paper, the resistance of the structure (qR) is interpreted as the maximum
uniformly distributed load it can resist. To serve as a basis of comparison, the structural
resistance was first computed according to EUROCODE 2:
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3. APPLIED COMPUTATIONAL METHODS

The stochastic characteristics of the resistance of the given structure were computed
using three different methods: second-moment analysis, Monte-Carlo simulation and
stochastic finite element method.

3.1  Second moment analysis

First a simple second-moment analysis was carried out. Assuming that the structure will
fail at the place of the maximum bending moment, the mean value of the structural
resistance can be calculated similar to (2.1), using the mean values of the input
parameters instead of their design values given by EUROCODE 2:
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The standard deviation of the structural resistance (sqR) can be calculated by expanding
it about its mean value by Taylor series (Belytschko, Liu, Mani, 1986; Handa,
Andersson, 1975). Assuming that qR is function of a ξ random variable, sqR can be
approximately expressed with the first order partial derivative of qR as

ξ⋅
∂ξ

∂
= s

q
s R

qR
(3.1)

where sξ is the standard deviation of ξ. The higher order partial derivatives were
neglected from (3.1), but this approximation has about 0.1 per cent error only in our
case. According to (3.1), the standard deviation of the structural resistance can be finally
expressed in the following form (Szalai, 1990):
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3.2  Monte-Carlo simulation

The distribution of the resistance of the sample structure was determined by Monte-
Carlo method in two different ways.

3.2.1  Monte-Carlo simulation concerning to the resistance of midst cross-section

First it was assumed that the structure will fail at the place of the maximum bending
moment, and the stochastic characteristics of qR was calculated similar to (2.1), using
randomly generated input parameters (b, h, a, fc, fs). The simulation was carried out in
two slightly different ways. Once the distribution of all random input parameters were
supposed to be normal, than according to experiences of E. Mistéth (Mistéth, 1974) the
distributions of the structural dimensions (b, h, a) were assumed to be normal and the
strengths of concrete and reinforcing steel were assumed to follow Gamma distribution.
Normally distributed random numbers were generated the following way (Deák, 1986):

21m
n
i 2sinln2s πζ⋅ζ⋅−⋅+ξ=ξ ξ (3.2)

where ξm and sξ are the mean value and standard deviation of the universe, ζ1 and ζ2 are
uniformly distributed random numbers. Random numbers having Gamma distribution
were produced using the following relation (Deák, 1986):

( )
0

frac

r

1j
j

g
i

rlog
int

ξ+
λ

Γ+ζ−
=ξ

∏
=

where r, λ and ξ0 are the parameters of the Gamma distribution (rint is the integer part of
r and rfrac is the fraction part of r), ζj is a uniformly distributed random number and Γ is
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a randomly generated fraction-parameter Gamma function. The number of the
simulations was one million in both cases.

3.2.2  Monte-Carlo simulation using finite element method

On the other hand, the Monte-Carlo method was also carried out using the finite
element method. In this case, the distribution of the stochastic input parameters was
supposed to be normal. Random input parameters were generated using (3.2) separately
for each finite element. For the finite element analysis, 1D bar finite elements with
deformations of order three were used (Bojtár, Gáspár, 1993). The beam was loaded
with single-parameter load, witch means that the vector of external loads (q) can be
expressed as a product of the load-intensity (q) and a load-distribution vector (ΦΦ):

q = q ⋅ ΦΦ

For each realisation of the input parameters the structure was loaded until failure and the
maximum value of the load-intensity was interpreted as the structural resistance (qR).
The number of the simulations was in this case two hundred only because the process
was too consumptive of time.

3.3  Stochastic finite element method

The stochastic characteristics of the resistance of our structure were finally computed by
the stochastic finite element method. The mean value of the structural resistance was
determined by finite element method as described in 3.2.2. using the mean values of the
input parameters (bm, hm, am, fcm, fsm). The standard deviation of the structural resistance
was calculated using the stochastic finite element method from the following equation
(Handa, Andersson, 1975; Eibl, Schmidt-Hurtienne, 1995; Koris, 1996):
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where Cq is the covariance matrix witch includes sqR, K is the global stiffness matrix of
the structure, u is the vector of nodal displacements, δξξ includes the standard deviations
of random input variables, Cρ is the correlation matrix and KM is:
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In (3.3) i is for the number of the node where the structure fails.
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4. RESULTS

The stochastic characteristics of the structural resistance were calculated in ten different
ways based on the methods described in chapter 3. First, the second-moment analysis
was carried out and a normal distribution was fitted to the derived statistics (method 1).
The results derived from Monte-Carlo simulation described in 3.2.1. with normally
distributed random input parameters were directly analysed (method 2), than the
stochastic characteristics of the structural resistance were also computed on the fitted
normal distribution (method 3). The empirical probability density function of the
structural resistance and the fitted theoretical normal distribution are shown in Fig. 3.

Fig. 3 Probability density function of the structural resistance derived from Monte-
Carlo simulation with normally distributed random input parameters

Results of the simulation using Gamma-distributed random concrete and steel strengths
as input parameters (3.2.1) were also directly analysed (method 4). To these results a
normal distribution (method 5) and a Gamma distribution (method 6) was also fitted,
since the empirical probability density function has showed positive skewness. The
empirical and fitted theoretical probability density functions of the structural resistance
derived from these methods are shown in Fig. 4.

Fig. 4 Probability density function of the structural resistance derived from Monte-
Carlo simulation with Gamma distributed random concrete and steel strengths
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The mean value and standard deviation of the structural resistance (qR) were also
computed by stochastic finite element method, and a normal distribution was fitted to
these statistics (method 7). Fig. 5 represents the relation between the load intensity (q)
and the vertical deflection of midspan (y) calculated by stochastic finite element
method. The stochastic characteristics of the load intensity calculated at the failure of
the structure (y = ymax) are interpreted as the characteristics of the structural resistance.

Fig. 5  Scatter of load-bearing capacity computed by stochastic finite element method

Finally a Monte-Carlo simulation using finite element method (3.2.2.) was carried out
(method 8). To the results of the simulation a normal distribution (method 9) and a
Weibull distribution (method 10) was also fitted, since the empirical probability density
function seemed to have negative skewness. The resulting empirical and fitted
theoretical probability density functions of the structural resistance are shown in Fig. 6.

Fig. 6 Probability density function of the structural resistance derived from Monte-
Carlo simulation using finite element method

Using the above methods the following statistics of the structural resistance were
computed: mean value, standard deviation, skewness, 1‰  lower quantile, probability of
the resistance being smaller than the resistance computed by EUROCODE 2 and finally
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the reliability of the estimation in case of theoretical distributions using the theorem of
Kolmogorov and Smirnov (the closer 1-K(z) is to 1 the better the estimation is). The
computed statistics of the structural resistance are listed in Tab. 3.

Method
Mean value

[kN/m]
Standard

deviation [%] Skewness
1 ‰ Quantile

[kN/m]
p(qR < 10 kN/m)

[‰] 1 - K(z)
CPU time

[hours]
1 13.2741 6.71 0 10.5197 0.1198 - -
2 13.2556 6.72 0.0852 10.6011 0.0750 - 0.48
3 13.2556 6.72 0 10.5016 0.1296 0.1307 -
4 13.2567 6.71 0.2703 10.8163 0.0060 - 3.12
5 13.2567 6.71 0.2703 10.5076 0.1257 0.0000 -
6 13.2567 6.71 0.2703 10.8449 0.0036 0.9979 -
7 13.4250 13.61 0 9.2693 4.0233 - 0.53
8 13.1540 8.77 -0.1605 - - - 13.63
9 13.1540 8.77 0 9.5854 3.1551 0.9733 -
10 13.1540 8.77 -0.1605 7.8438 20.2006 0.9728 -

Tab. 3  Statistics of the structural resistance (qR) derived from different methods

5. CONCLUSIONS

Results obtained from stochastic finite element method were compared with the results
of other procedures and it can be approved that this method it is accurate and efficient
enough in safety analysis of reinforced concrete beams. Differences in the results
concerning the statistics of the structural resistance are rather effected by the differences
in evaluation methods of structural resistance . This process is less time-consuming than
the Monte-Carlo simulation (see utilised CPU times in Tab. 3) and opposed to second-
moment analysis and Monte-Carlo simulation (methods 1, 2 and 4) it can be easily used
in case of more complex structures too.
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