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SUMMARY

The paper presents a new composite material model, suitable for modeling fiber
reinforced concrete under static loading. The governing equations of a new uniaxial
rheological device are worked out. The model considers three phases in the composite
material, an elastic one, a brittle fracture (concrete), and composite fiber yielding. As for
the elastic behavior, the elastic properties can be determined from a simple mixing rule
according to the concrete and fiber parameters in the composite. As for the irreversible
deformations in the composite material, two permanent variables are introduced, one
related to matrix cracking, the other to plastic fiber deformation. The fibers are only
significantly activated after cracking due to plastic matrix-fiber interaction, represented in
the model by the coupling modulus H. The only parameter to be determined in this model
is H, it can be calibrated from experimental test results. In this paper, H is determined
from some uniaxial direct tensile test results on notched, Reactive Powder Concrete
specimens.
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1. INTRODUCTION

Steel Fiber Reinforced Concrete (SFRC) is increasingly used as building material in civil
engineering structures. Over the last 20 years it has been used for airport runways,
tunnels, bridge decks, tubes, hydraulic structures, pipes, dams, industrial floors, etc. The
main purpose of applying this material is to increase ductility and fracture toughness of
plain concrete. Fibers can limit the crack width and crack propagation in the tension
zone.
The efficient use of SFRC materials requires an appropriate modeling of the material
behavior, both experimentally and numerically. The main difficulty lies in the
unmeasurable concrete and fiber stress distribution related to the complex fiber-matrix
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interaction after cracking. This paper focus on a simple macroscopic constitutive model
to account for the plastic matrix-fiber couplings.

2. 1-D RHEOLOGIAL MODEL FOR FIBER-REINFORCED CONCRETE

Figure 1. shows a simple 1-D rheological device for a fiber reinforced composite. The
model is composed of two elastic springs (stiffness C

m
 and C

f
, friction strengths k

m

and k
f

), which describe the elastic matrix (concrete) and fiber behavior, respectively.

Fibers are only significantly activated after matrix cracking ( k
m

) due to plastic matrix-

fiber interaction, represented in the model by the spring of rigidity H, which links the two
components once irreversible deformation occur. The irreversible deformation in the
composite material is taken into account by two introduced permanent strain variables,

one related to matrix cracking ( ε
m

p
= plastic matrix strain), the other to plastic fiber strain

( ε
f

p
). Finally, Σ and ε are the total applied stress and strain (change in length),

respectively.
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Fig.1 1-D rheological device for fiber-reinforced concrete

Consider now an applied stress, Σ , on the system, which results in composite
constituent stresses in the matrix, σ

m
, and in the fiber, σ

f
, respectively. From

elementary equilibrium consideration the force flow in the rheological device is governed
by:

( ) ( )p
ff

p
mmfm CC ε−ε+ε−ε=σ+σ=Σ .       (1)

( ) ( )p
f

p
m

p
mmm HC ε−ε−ε−ε=σ ,       (2)

( ) ( )p
f

p
m

p
fff HC ε−ε+ε−ε=σ ,       (3)

Eq.(1), (2) and (3) can be expressed in an incremental form. In matrix notation we have:
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Furthermore, the stresses are constrained by the loading functions:

{ } ( ) ( ) 00 ≤−σ=σ≤−σ=σ= yffftmmmfm ff;ff;f,fmaxf .       (5)

Eq.(5) define two yield functions for the composite. Eq.(2), (3) and (5) yield the
condition of onset of irreversible matrix or fiber deformation:

{ } fmyttmfm C/Cf/f:ifff,fmaxf <≤−σ== 0 ,       (6)

{ } fmytyffm C/Cf/f:ifff,fmaxf >≤−σ== 0 .       (7)

Finally, to complete the modeling we need to add the evolution laws for both the elastic
brittle matrix behavior and for the elastic perfectly plastic fiber behavior (Fig.2):

000 =σ=σ≥ε mm
p
m d,, ;       (8)

00 =σ=σ≥ε fyf
p
f d,f, .       (9)

Consider now a fiber reinforced concrete specimen under tension loading. Beyond matrix
cracking or fiber yielding, the material behaves elastically, i.e.:

{ } ( )ε+=σ+σ=Σ⇔<= fmfmfm CCf,fmaxf 0 .     (10)

σm σ f

f t f y

εε

ε 0

m

ε 0

f

Fig.2: Elastic brittle matrix and elastic perfectly plastic fiber behavior

Generally, in the case of fiber reinforced concrete, matrix cracking occurs prior to fiber
yielding. The concrete cracking occurs for mt C/f=ε0 . The following stress state in the

composite material defines the matrix cracking:
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0=ε− p
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where the "-" and "+" subscript design the plastic deformations and stresses before and
after the matrix cracking, respectively. Due to the plastic matrix-fiber couplings, the
matrix cracking leads to a fiber activation. According to the brittle matrix behavior
( σ σ

m m
d= = 0 ), and the equilibrium consideration ( fm σ+σ=Σ ) in Eq.(3), the

activated fiber stress coincides with the total applied stress: fσ=Σ . From the onset of

cracking, Eq.(6), and the incremental form of the governing equations, (4), lead to the
permanent strain increments as:

0=εε
+

=ε p
f

m

mp
m d,d

HC

C
d .     (15)

The stress increment of the composite (respectively of the composite fiber) or the
tangential stress-strain relation read:
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Finally, the fiber yielding starts for:

yff f=σ=σ=Σ=Σ +−+− 1111 ,     (17)

while the plastic strain increment according to the perfectly plastic fiber and brittle matrix
behavior reads:

ε=ε=ε ddd p
f

p
m .     (18)

The determined stress-strain curves for the composite and its constituents are shown in
Fig.3. With a simple parameter study of H , it is possible to express two limit cases of
the tangential modulus of the composite. For H = 0 , there is no matrix fiber interaction,
while ∞→H  corresponds to a perfect matrix-fiber bond. In these cases, the tangential
modulus of the composite materials reduces to:
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, mfcp CCC
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and the stress-strain relations:
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Fig.3 Stress-strain curves for fiber reinforced composite
         (matrix cracking prior to fiber yielding)

Consider now the special case of fiber yielding prior to matrix cracking. In this case, fiber
yielding occurs for fy C/f=ε0 , and the following composite material stress state can

be determined at fiber yielding:

0=ε=ε=ε=ε +−+− p
m

p
m

p
f

p
f ,     (21)

( ) 0
00 ε+=Σ=Σ +−

fm CC      0
00 ε=σ=σ +−

mmm C      yfff fC =ε=σ=σ +−
0

00 ,     (22)

while the permanent strain increment and the tangential stress-strain relation after fiber
yielding, according to Eq.(4) and (7) read:

0=εε
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=ε p
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Finally, the matrix cracking occurs for:

tm f=σ− 1 .     (25)

The plastic strain increments according to the perfectly plastic fiber and brittle matrix
behavior after the matrix cracking is still given by Eq.(18). The following composite
stresses at the onset of matrix cracking are hence obtained:

yftmyt f,f,ff =σ=σ+=Σ −−− 111     (26)

yfmy f,,f =σ=σ=Σ +++ 111 0 .     (27)
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Fig.4 Stress-strain curves for fiber reinforced composite
        (fiber yielding prior to matrix cracking)

The computed stress-strain curves are shown in Fig.4, where the effect of the coupling
modulus H  on the composite tangential stress-strain relation can be seen. Two limit
values are available for the tangential modulus C

cp
 in this case:

mcp CC
H
lim =
→0

, mfcp CCC
H

lim +=
∞→

,     (28)

and the composite and composite matrix stress increments become now:

ε=σ=Σ
→

dCdd
H
lim mm0

, ( ) ε+=σ=Σ
∞→

dCCdd
H

lim mfm .     (29)
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3. IDENTIFICATION OF COMPOSITE MATERIAL PARAMETERS

The introduced material parameters are composite material parameters which cannot,
without any further investigation and hypothesis, be directly associated with material
parameters of the materials constituting the composite. In this paper for sake of
simplicity, we consider the simplest identification process, using a parallel mixture rule
for the elastic properties, i.e.:

( )C E
m f m

= −1 η , C E
f f f

= η ,     (30)

where η
f

=fiber content, E
m

 and E
f
=elastic modulus of concrete and of the fiber

material, respectively. The composite strengths may be determined in a similar way. In
other words, the only undetermined parameter of the model is H, it can be calibrated
from direct tensile tests.
In the present work, H is determined from direct tensile test results on notched Reactive
Powder Concrete specimens. The material parameters for the applied two RPC mixtures
are given in Tab.1.

Young’s
modulus

Compressive
strength

Flexural
strength

Fracture
energy

Fiber
content

RPC200 50…60GPa 170…230MPa 30…60MPa 20…40KJm-2 1.5 V%
RPC800 65…75GPa 490…680MPa 45…140MPa 1.2…20KJm-2 3 V%

Tab.1 Material parameters for RPC200 and RPC800, Richard, P., Cheyrezy, M.(1995)

Fig.5 shows a good agreement between test results and model assumption. Note, the
ultimate macroscopic strain of composite was calculated according to the energy
absorption of composite (area under the curve). Both for RPC200 and RPC800, the
moduli of plastic couplings was H=1600MPa. This result suggest a strong dependence of
H on the microstructure of concrete (aggregates, fibers, etc.). The determination of this
effect needs further experimental and theoretical investigation.

4. CONCLUSIONS

A new material model for fiber reinforced concrete is presented in this paper which takes
into account plastic matrix-fiber couplings. As the results suggest, the model can capture
the essential features of the fiber reinforced concrete and of its constituents under tension
loading. The main advantage of this model is that the only undetermined material
parameter, H , can be calibrated from uniaxial tension tests. The determination of the
dependence of H on the constituents material parameters and on the microstructure
needs further intensive experimental and theoretical investigation.
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Fig.5 Tensile stress-strain curves for RPC200 and RPC800

5. FUTURE WORK

In the simplified 1-D case one array of fibers was only considered. The model can be
extended to the 3-D case with multidirectional arrays of fiber. To this end, an energetic
approach can be used, which allows for a straightforward extension of the 1-D model to
the 3-D case. Furthermore, the 1-D rheological device can easily be extended with
softening and hardening behavior of matrix and fibers as well. This modification leads to
a more complex rheological model of fiber reinforced concrete under static loading.
Finally, the developed material model allows us to work out a simple bending model for
SFRC elements based on the equilibrium of forces in a cracked section.
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