
2nd Int. Ph.D. Symposium in Civil Engineering 1998 Budapest

BUCKLING OF BEAMS WITH LOW SHEAR STIFFNESS

Ákos Sapkás1 and László Kollár2

Technical University of Budapest
H-1111 Budapest Bertalan Lajos u. 2

SUMMARY

In the engineering practice it is very important that the structures have an adequate safety
against the loss of stability. One form of the loss of stability is the lateral torsional
buckling of beams. Solutions were worked out in the past to determine the critical load
of a simple beam. There are structures where the above mentioned formulas cannot be
applied e.g. beams with openings and sandwich structures where large shear
deformations arise. In the following paper the authors will present two methods - that
will take into account the effect of the shear deformation - to determine the critical load
for these types of beams. At the end a short and simple solution is presented.
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l. INTRODUCTION

Beams subjected to bending moments (and/or vertical loads) may loss their stability by
lateral torsional buckling. If the applied load reaches a certain value (the critical load),
the beam suddenly moves perpendicular to the plane of the applied load. This
phenomenon, called lateral torsional buckling, plays a very important role in the design of
slender beams, especially if the twist of the ends of the beams are not restrained, e.g. in
the case of moving and lifting of beams.

Beams are commonly manufactured with openings where the shear deformation is
significant. Sometimes trusses or frame structures are applied as beams, and for those
structures, the shear deformation may be higher than the bending deformation.
Composite beams and sandwiches also show high shear deformation.

Closed form solutions and simple formulas were determined in the past to calculate the
critical load for beams with symmetrical cross-section taking into account the bending
stiffnesses and the torsional stiffnesses of the beam. The authors are not aware of any
closed form solution, which takes into account the effect of shear deformation. By
neglecting the shear deformation the buckling load of a beam may be overestimated.

The goal of this paper is to find a method to calculate the critical load of beams taking
into account the shear deformation.
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2. BUCKLING ANALISYS USING THE EQUILIBRIUM METHOD

Consider a symmetric, prismatic beam of length l (Fig 1). The beam is simply supported
at both ends. The vertical displacement is restricted but the cross-section may rotate
around the x and y-axes. The twist of the ends of the beam i.e. the rotation of the cross-
sections around the z-axis is also restricted. The beam is subjected to a uniformly
distributed load (q) in its symmetry plane (Fig 1).

Fig. 1

In Fig. 1 point T is indicating the shear center of the cross-section, point S is the center
of gravity, and point P indicates the horizontal line along the vertically distributed load
(q) acts.

The goal is to determine the critical load intensity ( crq ) causing the buckling of the beam.

The beam may twist about its axis ( Φ ), may move vertically (v), and may move
horizontally (u). The horizontal displacement of a beam can be put together from two
parts, the bending and the shear displacements:

SDT uuu += (2-1)

where

Tu is the total horizontal (x directional) displacement of the shear center,

Du is the horizontal displacement from bending,

Su is the horizontal displacement from the shear deformation.

Between the two displacements the following connection can be made:
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where

yD is the bending stiffness of the beam in the y direction,

S is the shear stiffness in the horizontal plane.

The equilibrium equations of a basic beam element are:

x
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where

yD is the bending stiffness of the beam in the y direction,

ωD is the warping stiffness of the beam,

tD is the torsional stiffness of the beam,

Du is the displacement of the shear center in the x direction from bending,
Φ is the twisting of the sections,

xq is the load in x direction,

zTm is the torque in the shear center.

These equilibrium equations are almost identical with the equations can be found in the
literature. The only difference is that Eq. (2-3a) contains only the horizontal displacement
from bending (uD ).

The detailed determination of the xq  and zTm  loading parts can be found in the literature

so only the final results are presented:
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where

xM is the bending moment from q vertical load,

oy is the distance between the center of gravity and the shear center,

1β is a geometrical value that describes the section:
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N is the axial force of the beam

pTi is the inertia circle of the section on the T shear center:
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The (2-4a) and (2-4b) equilibrium equations can be found in the literature. The only
difference is that the first member (2-4a) contains the horizontal displacement from
bending ( Du ) not the total horizontal displacement ( Tu ). The above mentioned two

equations contain three unknown functions: Du , Su  and Φ . For the description of the

problem (2-1) and (2-2) equations must be considered.



2.1 Solution with constant bending moments at both ends
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Fig. 2

In case of gable-like supported beam loaded with constant bending moments at both ends
(Fig.3) the simplified form of the differential equations is the following:
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We are searching for the solution in the following form:
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With the application of these functions the boundary conditions of the gable-like support
are satisfied in the z=0 and z=l sections.

The above-applied displacement functions ( Du  and Su ) also satisfy Eq. (2-5d). By

substituting the solution functions into Eq. (2-5a-c) the following algebraic system of
equations arises:
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The condition of the buckling is the non-trivial solution: the determinant of the
coefficient matrix must be zero.
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From Eq. (2-8) we become the following quadratic equation:
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Eq. (2-9) is identical with the solution that can be found in the literature. But instead of
the bending stiffness ( yD ) we apply a “modified bending stiffness” that contains the

effect of the shear deformation.

3. DETERMINATION OF THE CRITICAL LOAD WITH ENERGY METHOD
 
In the following we will determine the critical load of a lifted beam loaded with q
uniformly distributed load (Fig. 3).
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Fig.3.

The basic equation gives the equilibrium of external and internal works:

0int =− LLext (3-1)

The internal and external works are dependent from the displacements, which are
presumed as series of functions. The unknown coefficients ( 1c , 2c ,…, nc ) can be

determined from the following conditions
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The equation of the internal work:
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where the last term contains the inner work from the shear deformation.



The expression of external work can be assembled from five parts:

a)  The uniformly distributed load acts in the shear center of the beam. During the
depression of the load external work arises.

b) The vertical load acts in the real point of its application. This point twists around the
shear center and sinks.

c) We release the fix supports and allow the slew of twisted beam as a rigid body.

d) The horizontal force-components of the slanted cables cause compression. Because of
the deformation mentioned in point a) these two forces come closer to each other.

e) The point of suspension is usually not consistent with the center of gravity. The
horizontal force mentioned in the previous point acts non-axial.

In the above mentioned five cases the external works are the following:
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The whole external work:
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In the following the simplest solution is presented, we approximate the displacements
with monomial functions:
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By substituting these functions into Eq (3-2) and (3-3a-e) and minimalizing by 1U  and

1Φ  the intensity of the critical load can be determined. This method is quite difficult.
Another possible way of solution is when we determine the critical loads for every sub-
cases ( icrq , ) and summarize them according to the following formula:
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3.1 Determination of the critical loads

In the following we will determine the critical loads for the above mentioned five cases.

Because of the internal work is the same in all five cases we will publish it in the first
place.

By substituting Eq. (3-5a-c) into Eq. (3-2) we become the following formula:
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3.11 The critical moment of the beam loaded in the shear center

By substituting the monomial functions (Eq. 3-5a-c) into the equation of the external
work the following expression arises:
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From the equality of the internal and the external work the following partial derivatives
can be calculated:
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From Eq. (3-9) and (3-10) the following system of linear equations arises:
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Eq. (3-12) gives the non-trivial solution to determine the critical load:
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From Eq. (3-12) the following quadratic equation arises:
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where
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Eq. (3-13) is identical with the solution that can be found in the literature. But instead of
the bending stiffness ( yD ) we apply a “modified bending stiffness” that contains the

effect of the shear deformation.

3.12 The critical bending moment of the beam loaded in point P and in the shear
center with uniformly distributed forces

According to the steps used in section 3.11 the critical load can be calculated:
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3.13 The critical moment of the beam twisting around the suspension points

Using the steps described in the previous sections the critical load can be calculated:
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3.14 The critical load from the critical value of the axial force

Once again only the final solution is presented:
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3.15 The critical load from the eccentricity of the N axial force

The axial force (N) cause a constant moment (M=aN). The critical value of this moment
( crM ) can be calculated from Eq. (2-9). From the positive root of the equation the

critical load can be calculated:
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3.16 Summation of the critical loads

The critical load can be calculated by addition of the critical loads of the sub-cases
according to the following formula:

∑
=

=
5

1 ,

11

i icrcr qq

where icrq ,  is the critical load derived from the sub-cases.

If one of the critical loads comes to a negative value (e.g. in case b) when the load acts
under the shear center) then this load must be considered as infinite.

4. CONCLUSIONS

By solving the equations of the lateral torsional buckling of beams taking the shear
deformation into account we arrived at the following simple result. The existing solutions
in the literature (without shear deformation) can be readily used to determine the critical
load with the following modification: the vertical bending stiffness of the beam must be
modified according to the following formula:
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where

S is the shear stiffness of the beam in y direction,
l is the distance between the suspension points of the beam.
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